Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hande Petek, ${ }^{\text {a }}{ }^{*}$ Nesuhi
Akdemir, ${ }^{\text {b }}$ Erbil Aǧar, ${ }^{\text {b }}$ Musa Özil ${ }^{\text {b }}$ and Ismet Senel ${ }^{\text {a }}$

${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Science Faculty, Department of Physics, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Ondokuz Mayıs University, Arts and Science Faculty, Department of Chemistry, 55139 Samsun, Turkey

Correspondence e-mail: hpetek@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.095$
Data-to-parameter ratio $=14.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Diphenylmethoxyphthalonitrile

The title compound, $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$, contains three aromatic rings. The structure is stabilized by $\pi-\pi$ stacking interactions.

Comment

4-Diphenylmethoxyphthalonitrile, (I), is a precursor in the synthesis of 2,9,16,23-tetrahydroxyphthalocyanines (Leznoff et al., 1994). For many years, phthalocyanines have attracted continued interest in various research fields, e.g. chemical sensors, electrochromism, batteries, applications in colours, catalysis, photodynamic therapy, semiconductive materials, liquid crystals and non-linear optics (Leznoff \& Lever, 19891996). One of the most promising fields is the use of phthalocyanine derivatives as photosensitizers for photodynamic theraphy (PDT), an emerging new bimodal strategy for treating a large variety of diseases, such as psoriasis, cancer, dysplasia and infectious diseases, and for prevention of HIV-1 infection (Leznoff \& Lever, 1989-1996; Vzorov et al., 2003).

(I)

The title compound contains three aromatic rings. Rings A (C3-C8), B (C10-C15) and $C(\mathrm{C} 16-\mathrm{C} 21)$ are each essentially planar. Ring A carries two cyano groups. Rings B and C are connected by a C atom, and the dihedral angle between them is $77.66(7)^{\circ}$. All of the $\mathrm{C} \equiv \mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond distances and angles (Table 1) are in good agreement with literature values (Atalay et al., 2003). The dihedral angles between rings A / B and A / C are $8.79(11)^{\circ}$ and $75.90(7)^{\circ}$, respectively. There are

Figure 1
An ORTEPIII (Burnett \& Johnson, 1996) drawing of the molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Received 19 April 2004 Accepted 20 April 2004 Online 29 May 2004
$\pi-\pi$ stacking interactions; ring A in the molecule at (x, y, z) stacks with ring B at $(1-x, 1-y, 1-z)$, with a distance of 3.6887 (14) \AA between the ring centroids.

Experimental

4-Diphenylmethoxyphthalonitrile was synthesized according to reported procedures (Leznoff et al., 1994). Single crystals were obtained from an ethanol solution by slow evaporation at room temperature.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=310.34$
Monoclinic, $P 2_{1} / n$
$a=8.9005(13) \AA \AA^{\circ}$
$b=15.1033(19) \AA$
$c=12.1253(15) \AA$
$\beta=92.632(11)^{\circ} \AA^{\circ}$
$V=1628.2(4) \AA^{3}$
$Z=4$
$D_{x}=1.266 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6068
\quad reflections
$\theta=2.2-26.7^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, green
$0.28 \times 0.21 \times 0.15 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: none
15368 measured reflections
3187 independent reflections
1458 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.095$
$S=0.83$
3187 reflections
218 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 6$	$1.368(2)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.439(3)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.447(2)$	$\mathrm{C} 2-\mathrm{N} 2$	$1.138(3)$
$\mathrm{C} 8-\mathrm{C} 1$	$1.440(3)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.142(3)$
C6-O1-C9	$118.94(14)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$123.08(18)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 16$	$110.57(15)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$178.3(3)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$	$106.54(15)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 8$	$179.1(3)$

H atoms were positioned geometrically and refined using a riding model, with an aromatic $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$, a $\mathrm{C}-\mathrm{H}$ distance of $0.98 \AA$ for the tertiary C atom and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Atalay Ş., Ağar A., Akdemir N. \& Ağar E. (2003). Acta Cryst. E59, o1111o1112.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C., Hu, M., McArthur, C. R. \& Qin, Y. (1994). Can. J. Chem. 72, 1990-1998.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties \&
Applications, Vols. 1, 2, 3 \& 4. Weinheim \& New York: VHC Publishers Inc.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Vzorov, A. N., Marzilli, L. G., Compans, R. W. \& Dixon, D. W. (2003). Antiviral Res. 59, 99-109.

